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Abstract. We present a reduction procedure for gauge theories based on quotienting out the
kernel of the presymplectic form in configuration–velocity space. Local expressions for a basis of
this kernel are obtained using phase-space procedures; the obstructions to the formulation of the
dynamics in the reduced phase space are identified and circumvented. We show that this reduction
procedure is equivalent to the standard Dirac method as long as the Dirac conjecture holds: that the
Dirac Hamiltonian, containing the primary first-class constraints, with their Lagrange multipliers,
can be enlarged to an extended Dirac Hamiltonian which includes all first-class constraints without
any change of the dynamics. The quotienting procedure is always equivalent to the extended Dirac
theory, even when it differs from the standard Dirac theory. The differences occur when there
are ineffective constraints, and in these situations we conclude that the standard Dirac method is
preferable—at least for classical theories. An example is given to illustrate these features, as well
as the possibility of having phase-space formulations with an odd number of physical degrees of
freedom.

1. Introduction

The dynamics of gauge theories is a very wide area of research because many fundamental
physical theories are gauge theories. The basic ingredients are the variational principle, which
derives the dynamics out of variations of an action functional, and the gauge principle, which is
the driving principle for determining interactions based on a Lie group of internal symmetries.
The gauge freedom exhibited by the complete theory becomes a redundancy in the physical
description. The classical treatment of these systems was pioneered by Dirac (1950, 1964),
Bergmann (1949), and Bergmann and Goldberg (1955). Dirac’s classical treatment in phase
space (the cotangent bundle for configuration space) has been shown (Gotay and Nester 1979,
1980, Batlleet al 1986) to be equivalent to the Lagrangian formulation in configuration–
velocity space (the tangent bundle). One ends up with a constrained dynamics with some
gauge degrees of freedom. One may choose, as is customary in many approaches (Pons and
Shepley 1995), to introduce new constraints in the formalism to eliminate these unwanted—
spurious—degrees of freedom. This is the gauge fixing procedure.
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There are approaches other than gauge fixing. For instance, the method of Faddeev and
Jackiw (1993) and Jackiw (1995) is to attempt to reduce the system to its physical degrees of
freedom by a process of directly substituting the constraints into the canonical Lagrangian. It
has been proved (Garcı́a and Pons 1997) that, as long as ineffective constraints—functions that
vanish in the constraint surface and whose differentials also vanish there—are not present, the
Faddeev–Jackiw method is equivalent to Dirac’s.

A reduction procedure (Abraham and Marsden 1978, Sniatycki 1974, Lee and Wald 1990)
which seems to be particularly appealing from a geometric point of view consists in quotienting
out the kernel of the presymplectic form in configuration–velocity space in order to get a
reduced space, the putative physical space, with a deterministic dynamics in it, that is, without
gauge degrees of freedom. One must be careful that these techniques do not change the physics,
for example by dropping degrees of freedom, and that they are applicable in all situations of
physical interest. For example, we know of no treatment of this technique which applies to the
important case when there are secondary constraints—one purpose of this paper is to provide
this treatment.

In this paper we present a complete reduction method based on quotienting out the kernel
of the presymplectic form. We establish a systematic algorithm and prove its equivalence with
Dirac’s method, but only so long as ineffective constraints do not appear. Our procedure turns
out to be equivalent to Dirac’s extended method, which enlarges the Hamiltonian by including
all first-class constraints. It differs from the ordinary Dirac method (supplemented by gauge
fixing) when ineffective constraints occur. Since the ordinary Dirac method is equivalent to
the Lagrangian formalism, it is to be preferred in classical models.

We will consider Lagrangians with gauge freedom. Thus they must be singular:
the Hessian matrix of the Lagrangian, consisting of its second partial derivatives with
respect to the velocities, is singular or, equivalently, the Legendre transformation from
configuration–velocity space to phase space is not locally invertible. Singular also means that
the pullback under this map of the canonical formω from phase space to configuration–velocity
space is singular.

In order to proceed, we first compute, in section 2, in a local coordinate system, a basis for
the kernel of the presymplectic form. Our results will be in general local; global results could
be obtained by assuming the Lagrangian to be almost regular (Gotay and Nester 1980). In
section 3, we will single out the possible problems in formulating the dynamics in the reduced
space obtained by quotienting out this kernel. In section 4 we will solve these problems and
will compare our results with the classical Dirac method. It proves helpful to work in phase
space here, and we end up with a reduced phase space complete with a well defined symplectic
form. In section 5 we illustrate our method with a simple example (which contains ineffective
constraints). We draw our conclusions in section 6.

2. The kernel of the presymplectic form

We start with a singular LagrangianL(qi, q̇i) (i = 1, . . . , N). The functions

p̂i(q, q̇) := ∂L/∂q̇i
are used to define the HessianWij = ∂p̂i/∂q̇j , a singular matrix that we assume has a constant
rankN − P . The Legendre mapFL from configuration–velocity space (the tangent bundle)
TQ to phase spaceT ∗Q, defined bypi = p̂i(q, q̇), defines a constraint surface of dimension
2N − P .

The initial formulation of the dynamics inTQ uses the Lagrangian energy

EL := p̂i q̇i − L
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andX, the dynamical vector field onTQ,

iXωL = d(EL) (2.1)

where

ωL := dqs ∧ dp̂s
is the pullback under the Legendre map of the canonical formω = dqs ∧ dps in phase space.
ωL is a degenerate, closed 2-form, which is called the presymplectic form onTQ. In fact there
is an infinite number of solutions for equation (2.1) if the theory has gauge freedom, but they
do not necessarily exist everywhere (if there are Lagrangian constraints).X must obey the
second-order condition for a function

Xqi = q̇ i ⇐⇒ X = q̇s ∂
∂qs

+As(q, q̇)
∂

∂q̇s

whereAs is partially determined by equation (2.1).
At first sight, the kernel ofωL describes, in principle, the arbitrariness in the solutionsX

of equation (2.1). Therefore, it is tempting to think that in order to construct a physical phase
space, we must just quotient out this kernel. The complete implementation of this procedure
which we are presenting in this paper is, first, far from obvious and, second, as we will see,
fraught with danger.

Let us first determine a basis for

K := Ker(ωL)

in local coordinates. We look for vectorsY satisfying

iY ωL = 0. (2.2)

With the notation

Y = εk ∂

∂qk
+ βk

∂

∂q̇k

equation (2.2) implies

εiWij = 0 (2.3a)

εiAij − βiWij = 0 (2.3b)

where

Aij := ∂p̂i

∂qj
− ∂p̂j
∂qi

.

SinceW is singular (this causes the degeneracy ofωL), it possesses null vectors. It is
very advantageous to this end to use information from phase space. It is convenient to use
a basis for these null vectors,γ iµ (µ = 1, . . . , P ), which is provided from the knowledge of
theP primary Hamiltonian constraints of the theory,φ(1)µ . Actually, one can take (Batlleet al
1986),

γ iµ = FL∗
(
∂φ(1)µ

∂pi

)
= ∂φ(1)µ

∂pi
(q, p̂) (2.4)

whereFL∗ stands for the pullback of the Legendre mapFL : TQ −→ T ∗Q. According to
equation (2.3a), εi will be a combination of these null vectors:εi = λµγ iµ. Notice that we
presume that these primary constraints are chosen to be effective.

To have a solution forβi we need, after contraction of equation (2.3b) with the null vectors
γ
j
ν ,

0= λµγ iµAijγ jν = λµFL∗
(
∂φ(1)µ

∂pi

)(
∂p̂i

∂qj
− ∂p̂j
∂qi

)
FL∗

(
∂φ(1)ν

∂pj

)
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which is to be understood as an equation for theλµs. We then use the identity

FL∗
(
∂φ(1)µ

∂pj

)
∂p̂j

∂qi
+FL∗

(
∂φ(1)µ

∂qi

)
= 0 (2.5)

which stems from the fact thatφ(1)µ (q, p̂) vanishes identically; we get

0= λµFL∗
(
∂φ(1)µ

∂pi

∂φ(1)ν

∂qi
− ∂φ

(1)
µ

∂qj

∂φ(1)ν

∂pj

)
= λµFL∗({φ(1)ν , φ(1)µ }). (2.6)

Condition (2.6) means that the combinationλµφ(1)µ must be first class. Let us split the primary

constraintsφ(1)µ between first classφ(1)µ1
and second classφ(1)

µ′1
at the primary level, and we

presume that second-class constraints are second class everywhere on the constraint surface
(more constraints may become second class if we include secondary, tertiary, etc, constraints).
They satisfy

{φ(1)µ1
, φ(1)µ } = pc det|{φ(1)

µ′1
, φ

(1)
ν ′1
}| 6= 0 (2.7)

wherepc stands for a generic linear combination of primary constraints. Equations (2.6)
simply enforce

λµ
′
1 = 0.

Consequently, a basis for theεi will be spanned byγµ1, so that

εi = λµ1γ iµ1

for λµ1 arbitrary. Onceεi is given, solutions forβi will then be of the form

βi = λµ1βiµ1
+ ηµγ iµ

where theηµ are arbitrary functions onTQ. We will now determine theβjµ1.
To computeβjµ1 it is again very convenient to use Hamiltonian tools. Consider any

canonical HamiltonianHc (which is not unique), that is, one satisfyingEL = FL∗(Hc). Since
we know from the classical Dirac analysis that the first-class primary constraintsφ(1)µ1

may
produce secondary constraints,

φ(2)µ1
= {π(1)µ1

, Hc}
we compute (having in mind equation (2.3b))

γ iµ1
Aij +

∂φ(2)µ1

∂pi
(q, p̂)Wij = γ iµ1

Aij +
∂φ(2)µ1

∂pi
(q, p̂)

∂p̂i

∂q̇j

= γ iµ1
Aij +

∂FL∗(φ(2)µ1
)

∂q̇j
= γ iµ1

Aij +
∂(Kφ(1)µ1

)

∂q̇j
(2.8)

where we have used the operatorK defined (Batlleet al 1986, Gr̀acia and Pons 1989) by

Kf := q̇iFL∗
(
∂f

∂qi

)
+
∂L

∂qi
FL∗

(
∂f

∂pi

)
.

This operator satisfies (Batlleet al 1986, Pons 1988)

Kf = FL∗({f,Hc}) + vµ(q, q̇)FL∗({f, φ(1)µ }) (2.9)

where the functionsvµ are defined through the identities

q̇ i = FL∗({qi,Hc}) + vµ(q, q̇)FL∗({qi, φ(1)µ }). (2.10)
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Property (2.9) implies, for our first-class constraints,

Kφ(1)µ1
= FL∗(φ(2)µ1

)

which has been used in equation (2.8). Let us continue with equation (2.8)

γ iµ1
Aij +

∂(Kφ(1)µ1
)

∂q̇j
= −FL∗

(
∂φ(1)µ1

∂qj

)
− FL∗

(
∂φ(1)µ1

∂pi

)
∂p̂j

∂qi

+
∂

∂q̇j

(
q̇ iFL∗

(
∂φ(1)µ1

∂qi

)
+
∂L

∂qi
FL∗

(
∂φ(1)µ1

∂pi

))
= WijK

∂φ(1)µ1

∂pi
(2.11)

where we have omitted some obvious steps to produce the final result. We can read off from
this computation the solutions for equation (2.3b):

βjµ1
= K ∂φ

(1)
µ1

∂pj
− FL∗

(
∂φ(2)µ1

∂pj

)
. (2.12)

Therefore, a basis forK is provided by

Γµ := γ jµ
∂

∂q̇j
(2.13a)

and

∆µ1 := γ jµ1

∂

∂qj
+ βjµ1

∂

∂q̇j
. (2.13b)

Vectors Γµ in equation (2.13a) form a basis for Ker(TFL), whereTFL is the tangent
map of FL (also often denoted byFL∗). They also span the vertical subspace ofK:
Ker(TFL) = Ver(K). This is a well known result (Cariñenaet al 1988), but as far as
we know equations (2.13a) and (2.13b) are the first explicit local expression forK itself.

All other results (Carĩnena 1990), obtained on geometrical grounds, forK are obvious once
the basis for this kernel is displayed, as it is in equations (2.13a) and (2.13b). For instance, it
is clear that dimK 6 2dimVer(K). Also, defining the vertical endomorphism

S = ∂

∂q̇i
⊗ dqi

we haveS(K) ⊂ Ver(K). The case when

S(K) = Ver(K)

corresponds, in the Hamiltonian picture, to the case when all primary constraints are first class
(indicesµ = indicesµ1). These are the so-called type II Lagrangians (Cantrjinet al 1986).
S(K) = ∅ corresponds to the case when all primary constraints are second class (indices
µ = indicesµ′1).

Equation (2.13a) implies, for any functionf onT ∗Q,

Γµ(FL∗(f )) = 0. (2.14)

The corresponding equation for∆µ1 is

∆µ1(FL∗(f )) = FL∗({f, φ(1)µ1
}). (2.15)

Since we will make use of this property later, we now prove this result. The action of∆µ1 is

∆µ1(FL∗(f )) = γ jµ1

(
FL∗

(
∂f

∂qj

)
+
∂p̂i

∂qj
FL∗

(
∂f

∂pi

))
+ βjµ1

WjiFL∗
(
∂f

∂pi

)
.
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We use equations (2.3b), (2.4), and (2.5) to get

∆µ1(FL∗(f )) = FL∗
(
∂φ(1)µ1

∂pj

∂f

∂qj

)
− FL∗

(
∂φ(1)µ1

∂qj

∂f

∂pj

)
= FL∗({f, φ(1)µ1

}).
The commutation relations (Lie brackets) for the vectors in equations (2.13a) and (2.13b)

are readily obtained, and we present these new results here for the sake of completeness. We
introduce the notation

{φµ1, φµ} = Aνµ1µ
φν

{φµ1, φν1} = Bρ1
µ1ν1

φρ1 + 1
2B

ρσ
µ1ν1

φρφσ

(commutation of first-class constraints is also first class). We arrive at

[Γµ,Γν ] = 0 (2.16a)

[Γµ,∆µ1] = FL∗(Aνµ1µ
)Γν (2.16b)

[∆µ1,∆ν1] = FL∗(Bρ1
ν1µ1

)∆ρ1 + vδ
′
1FL∗(Bρσ

′
1

ν1µ1{φσ ′1, φδ′1})Γρ (2.16c)

where thevδ
′
1 are defined in equation (2.10). Observe that the number of vectors in

equations (2.13a) and (2.13b) is even because|µ′1| = |µ|− |µ1| is the number of second-class
primary constraints (at the primary level), which is even.

Because the algebra ofK is closed, the action ofK onTQ is an equivalence relation. We
can form the quotient spaceTQ/K and the projection

π : TQ −→ TQ/K.

T Q/K is endowed with a symplectic form obtained by quotienting out the null vectors ofωL

(that is,ωL is projectable toTQ/K). The spaceTQ/K is not necessarily the final physical
space, however, because we have not yet formulated the dynamics of the system. We now turn
to the question of the projectability of the Lagrangian energy.

3. Obstructions to the projectability of the Lagrangian energy

In order to project the dynamical equation (2.1) toTQ/K, we needEL to be projectable under
π . However, in order forEL to be projectable we must check whether it is constant on the
orbits generated byK as defined by the vector fields of equations (2.13a) and (2.13b). Indeed
Γµ(EL) = 0, but from equation (2.15)

∆µ1(EL) = −FL∗(φ(2)µ1
)

where

φ(2)µ1
:= {φ(1)µ1

, Hc}.
If FL∗(φ(2)µ1

) 6= 0 for someµ1, thenφ(2)µ1
is a secondary Hamiltonian constraint. As a side

remark, note that in this caseFL∗(φ(2)µ1
) is a primary Lagrangian constraint. In fact it can be

written (Batlleet al 1986) as

FL∗(φ(2)µ1
) = [L]iγ

i
µ1

where [L]i is the Euler–Lagrange functional derivative ofL.
We see that there is an obstruction to the projectability ofEL to TQ/K as long as there

exist secondary Hamiltonian constraints or equivalently if there exist Lagrangian constraints.
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One way to remove this problem (Ibort and Marı́n-Solano 1992, Ibortet al1993) is to use
the co-isotropic embedding theorems (Gotay 1982, Gotay and Sniatycki 1981) and look for an
extension of the tangent space possessing a regular Lagrangian that extends the singular one
and leads to a consistent theory once the extra degrees of freedom are removed. This method
is equivalent to Dirac’s, but only if there are no secondary Hamiltonian constraints. However,
if there are, which is precisely our case, the dynamics becomes modified and thus changes
the original variational principle. Instead of using this technique we will try to preserve the
dynamics.

4. Physical space

In the cases where secondary Hamiltonian constraints do exist (for instance, Yang–Mills and
Einstein–Hilbert theories), we must find an alternative reduction ofTQ in order to obtain the
projectability ofEL .

The initial idea was to quotient out the orbits defined by equations (2.13a) and (2.13b).
SinceΓµ(EL) = 0 we can at least quotient out the orbits defined by equation (2.13a). However,
this quotient space,TQ/Ker(TFL), is already familiar to us: it is isomorphic to the surface
M1 defined by the primary constraints inT ∗Q. In fact, if we defineπ1 as the projection

π1 : TQ −→ TQ/Ker(TFL)

we have the decomposition of the Legendre mapFL = i1 ◦ π1, where

i1 :
TQ

Ker(TFL)
−→ T ∗Q

with

i1

(
TQ

Ker(TFL)

)
= M1.

Now we can take advantage of working inM1 ⊂ T ∗Q. Let us project our original
structures onTQ into M1. Consider the vector fields∆µ1. Equation (2.15) tells us that the
vector fields∆µ1 are projectable toM1 and that their projections are just{−, φ(1)µ1

}. In fact
these vector fields{−, φ(1)µ1

} are vector fields ofT ∗Q, but they are tangent toM1 becauseφ(1)µ1

are first class (among the primary constraints definingM1). Incidentally, note that the vector
fields{−, φ(1)

µ′1
} associated with the second-class primary constraints inT ∗Q are not tangent to

M1.
Formulation inM1 of the dynamics corresponding to equation (2.1) uses the pre-symplectic

form ω1 defined byω1 = i∗1ω, whereω is the canonical form in phase space, and the
HamiltonianH1 defined byH1 = i∗1Hc, with Hc such thatFL∗(Hc) = EL . The dynamic
equation inM1 will be

iX1ω1 = dH1. (4.1)

The null vectors forω1 are{−, φ(1)µ1
} (more specifically, their restriction toM1). (This

result is general: the kernel of the pullback of the symplectic form to a constraint surface in
T ∗Q is locally spanned by the vectors associated, through the Poisson bracket, with the first-
class constraints among the constraints which define the surface.) To project the dynamics of
equation (4.1) to the quotient ofM1 by the orbits defined by{−, φ(1)µ1

}

P1 := M1

({−, φ(1)µ1 })
(4.2)
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we need the projectability ofH1 to this quotient manifold. To check this requirement it
is better to work inT ∗Q. Then projectability ofH1 to P1 is equivalent to requiring that
{φ(1)µ1

, Hc}|M1 = 0.
Here lies the obstruction we met in the previous section, for it is possible that

{φ(1)µ1
, Hc}|M1 6= 0 for some constraintsφ(1)µ1

. Let us assume that this is the case. As we
did before, we define

φ(2)µ1
:= {φ(1)µ1

, Hc}.
These constraints may not be independent, some of them may vanish onM1, and some
previously first-class constraints may become second class. Those that do not vanish are
secondary constraints and allow us to define the new surfaceM2 ⊂ M1 (we define the map
i2 : M2 −→ M1) by φ(2)µ1

= 0.
We can now form the projection ofH2 := i∗2H1 toM2/({−, φ(1)µ1

}), but the projection of
ω2 := i∗2ω1 can still be degenerate in this quotient space, sinceω2 may have acquired new null
vectors (and may have lost some of the old ones). In fact, once all constraints are expressed in
effective form, Ker(ω2) is generated under the Poisson bracket associated withω by the subset
of effective constraints that are first class with respect to the whole set of constraints defining
M2. If there is a piece in this kernel that was not present in Ker(ω1), then new conditions for
the projectability ofH2 will appear.

The dynamic equation inM2 is

iX2ω2 = dH2. (4.3)

It is still convenient to work with structures defined inT ∗Q. Suppose thatφ(2)µ2
is any secondary,

first-class, effective constraint inM2; therefore,{−, φ(2)µ2
} ∈ Ker(ω2) but{−, φ(2)µ2

} /∈ Ker(ω1).
The new projectability condition forH2 induced byφ(2)µ2

is

{φ(2)µ2
, Hc}|M2 = 0.

This means that we might find new constraints if this condition is not satisfied. A new surface
M3 will appear, and a new kernel for a newω3 should be quotiented out, and so on. We will not
go further because we are just reproducing Dirac’s algorithm in phase space (Dirac 1950, 1964,
Batlleet al1986, Gotayet al1978). We do have a shift of language, however: what in Dirac’s
standard algorithm is regarded as a condition for the Hamiltonian vector field to be tangent to
the constraint surface is regarded here as a projectability condition for the Hamiltonian to a
quotient space.

To summarize: the constraint surfaceM1 is defined by the primary constraintsφ(1)µ , a
subset of which are the first-class constraintsφ(1)µ1

. These first-class constraints are used in the
formation of the quotient space

P1 = M1

{−, φ(1)µ1 }
.

The projectability condition forH1 (the pullback ofHc toM1) toP1 may be expressed as the
condition{Hc, φ

(1)
µ1
}|M1 = 0. If this condition holds, we have found the final physical space.

If it does not, there are new, secondary constraintsφ(2)µ1
, and these constraints along with the

initial set of primary constraintsφ(1)µ are used to define a constraint surfaceM2. Among the
set of constraints used to defineM2 are first-class constraints, including a subset of the first-
class constraints associated withM1, which we denoteφ(1)µ2

, and a subset of the secondary
constraints, which we denoteφ(2)µ2

. These first-class constraints are used in the formulation of
the quotient space

P2 := M2

({−, φ(1)µ2 }, {−, φ(2)µ2 })
.
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Again we must require projectability of the Hamiltonian; eventually, the final phase space is

Pf := Mf

({−, φ(1)µf }, {−, φ(2)µf }, . . . , {−, φ(k)µf })
(4.4)

whereφ(n)µf are the final first-classn-ary constraints, all of which are taken in effective form.
Pf is endowed with a symplectic form which is the projection of the formωf inMf , which is
the final constraint surface. The dimension ofPf is 2N −M −Pf , whereN is the dimension
of the initial configuration space,M is the total number of constraints, andPf is the number
of final first-class constraints. Observe that we end up with the standard counting of degrees
of freedom for constrained dynamical systems: first-class constraints eliminate two degrees
of freedom each, whereas second-class constraints eliminate only one each. The final result is
an even number because the number of second-class constraints is even.

In order to use the technique we have presented, the constraints are presumed to be effective
(for example, see equation (2.4))—if ineffective constraints occur, they can always be made
effective for use with this technique; in that sense, the technique is actually geometrical. One
might ask whether such modification of ineffective constraints can cause problems. It turns out
that if ineffective constraints occur, then their presence may modify the gauge fixing procedure
used in conjunction with the original Dirac method in such a way that the counting of degrees
of freedom differs from that presented above. In the next section we discuss a simple example
that shows the difference between Dirac’s original treatment, supplemented by gauge fixing,
and the quotienting method we have outlined here, which corresponds to Dirac’s extended
method.

Dirac’s extended method, which is equivalent to the one we have presented here, produces a
final phase space which is always even-dimensional. Dirac’s original procedure, supplemented
by gauge fixing, has the superiority of being equivalent to the Lagrangian variational principle.
Therefore, in spite of the fact that this latter method may result in a system with an odd number
of degrees of freedom (as in the example in the following section), it is to be preferred for
classical models.

5. Example

Consider the Lagrangian

L = 1

2
ẋ2 +

1

2z
ẏ2 (5.1)

wherez 6= 0. The Noether gauge transformations are

δx = 0 δy = εẏ

z
δz = ε̇

whereε is an arbitrary function.
First, we analyse this system from a Lagrangian point of view. The equations of motion

are

ẍ = 0 ẏ = 0. (5.2)

Thez variable is completely arbitrary and is pure gauge. These equations define a system with
three degrees of freedom in tangent space, parametrized byx(0), ẋ(0), y(0). Notice that the
gauge transformationδy vanishes on shell, soy is a weakly gauge invariant quantity.

Let us now analyse this system using Dirac’s method. The Dirac Hamiltonian is

HD = 1
2p

2
x + 1

2zp
2
y − λpz (5.3)
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whereλ is the Lagrange multiplier for the primary constraintpz = 0. The stabilization of
pz = 0 gives the ineffective constraintp2

y = 0, and the algorithm stops here. The gauge
generator (Batlleet al 1989, Ponset al 1997) is

G = ε̇pz +
ε

2
p2
y (5.4)

with ε an arbitrary function of time.
The gauge fixing procedure (Pons and Shepley 1995) has in general two steps. The first is

to fix the dynamics and the second is to eliminate redundant initial conditions. Here, to fix the
dynamics we can introduce the general gauge fixingz− f (t) = 0 for f arbitrary. Stability of
this condition under the gauge transformations sets ˙ε = 0. Since the coefficient ofε in G is
ineffective, it does not change the dynamical trajectories, and so the gauge fixing is complete.
Notice that this violates the standard lore, for we have two first-class constraints,pz = 0 and
py = 0, but only one gauge fixing. This totals three constraints that reduce the original six
degrees of freedom to three,x(0), px(0), y(0), the same as in the Lagrangian picture.

Instead, if we apply the method of quotienting out the kernel of the presymplectic form,
we get as a final reduced phase space

Pf = M2

({−, pz}, {−, py})
whereM2 is the surface in phase space defined bypz = 0, py = 0. We haveω2 = dx ∧ dpx
andH2 = 1

2p
2
x . The dimension ofPf is two.

This result, which is different from that using Dirac’s method, matches the one obtained
with the extended Dirac Hamiltonian, where all final first-class constraints (in effective form)
are added with Lagrange multipliers to the canonical Hamiltonian. Dirac’s conjecture was
that the original Dirac theory and the extended one were equivalent. We conclude that when
Dirac’s conjecture holds, the method of quotienting out the kernel is equivalent to Dirac’s,
whereas if Dirac’s conjecture fails, it is equivalent to the extended Dirac’s formalism.

6. Conclusions

In summary, we have the following.
(1) We have obtained a local basis forK = Ker(ωL) in configuration–velocity space for

any gauge theory. This is new and allows for trivial verifications of the properties ofK given
in the literature. To obtain these results it has been particularly useful to rely on Hamiltonian
methods.

(2) We have obtained as the final reduced phase space the quotient of the final Dirac
constraint surface in the canonical formalism by the integral surface generated by the final first-
class constraints in effective form. We find the constraint surface (Mf in equation (4.4)) through
a projectability requirement on the Lagrangian energy (or equivalently, on the Hamiltonian)
rather than through imposing tangency conditions on the Hamiltonian flows. Let us emphasize
this point: we do not talk of stabilization of constraints but rather projectability of structures
which are required to formulate the dynamics in a reduced physical phase space.

(3) We have compared our results with Dirac’s procedure. An agreement exists in all
the cases when no ineffective Hamiltonian constraints appear in the formalism. If there are
ineffective constraints whose effectivization is first class, then our results disagree with Dirac’s,
and it turns out that the quotienting algorithm agrees with the extended Dirac formalism. When
there are disagreements, the origin is in the structure of the gauge generators. Sometimes the
gauge generators contain pieces that are ineffective constraints, and they, contrary to the usual
case, do not call for any gauge fixing. Essentially, the variables that are canonically conjugate to
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these first-class ineffective constraints are weakly (on shell) gauge invariant. The quotienting
reduction method, as well as Dirac’s extended formulation, eliminates these variables and
yields a phase space whose variables are strictly (on- and off-shell) gauge invariant. This is
the difference with Dirac’s original method, supplemented with gauge fixing, which is able to
retain the weakly gauge invariant quantities. For this reason we feel that this latter technique
is superior to the quotienting algorithm in these circumstances—at least for classical models.

(4) We have produced a simple example that illustrates the failure of Dirac’s conjecture
in the presence of ineffective constraints. This example also shows that, in Dirac’s analysis,
it is possible to have Hamiltonian formulations with an odd number of physical degrees of
freedom. We must remark that in Dirac’s approach (supplemented with gauge fixing) it is not
always true that every first-class constraint eliminates two degrees of freedom: this does not
happen if there are first-class constraints that appear in the stabilization algorithm in ineffective
form.

(5) It is worth mentioning that other reduction techniques, specifically the Faddeev and
Jackiw method, may also fail to reproduce Dirac’s theory (Garcı́a and Pons 1998) if the
formalism contains ineffective constraints.

(6) Of course, one should not forget quantum mechanics. The canonical approach to
quantum mechanics involves a (non-singular) symplectic form (Isham 1984). In this method,
it is therefore required that phase space be even-dimensional. This argument would tend
to favour the quotienting algorithm. However, it may be that other approaches to quantum
mechanics, possibly the path integration approach, do not need such a requirement. In any case,
it is not strictly necessary that a model which is acceptable as a classical model be quantizable.
It is for these reasons that we say that an approach to Hamiltonian dynamics which results
in a phase-space picture equivalent to the tangent space picture—the original Dirac method
supplemented with gauge fixing—is favoured for classical models.

Acknowledgments

We are pleased to thank Cécile DeWitt-Morette for her advice. JMP and DCS would like to
thank the Center for Relativity of The University of Texas at Austin for its hospitality. JMP
acknowledges support by CIRIT and by CICYT contracts AEN95-0590 and GRQ 93-1047 and
wishes to thank the Comissionat per a Universitats i Recerca de la Generalitat de Catalunya
for a grant. DCS acknowledges support by National Science Foundation grant PHY94-13063.

References

Abraham R and Marsden J E 1978Foundations of Mechanics2nd edn (Reading, MA: Benjamin-Cummings)
Batlle C, Gomis J, Gr̀acia X and Pons J M 1989 Neother’s theorem and gauge transformations: application to the

bosonic string andCPn−1
2 J. Math. Phys.301345–50

Batlle C, Gomis J, Pons J M and Roman N 1986 Equivalence between the Lagrangian and Hamiltonian formalism for
constrained systemsJ. Math. Phys.272953–62

Bergmann P G 1949 Non-linear field theoriesPhys. Rev.75680–5
Bergmann P G and Goldberg I 1955 Dirac bracket transformations in phase spacePhys. Rev.98531–8
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