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Abstract. We present a reduction procedure for gauge theories based on quotienting out the
kernel of the presymplectic form in configuration—velocity space. Local expressions for a basis of
this kernel are obtained using phase-space procedures; the obstructions to the formulation of the
dynamics in the reduced phase space are identified and circumvented. We show that this reduction
procedure is equivalent to the standard Dirac method as long as the Dirac conjecture holds: that the
Dirac Hamiltonian, containing the primary first-class constraints, with their Lagrange multipliers,
can be enlarged to an extended Dirac Hamiltonian which includes all first-class constraints without
any change of the dynamics. The quotienting procedure is always equivalent to the extended Dirac
theory, even when it differs from the standard Dirac theory. The differences occur when there
are ineffective constraints, and in these situations we conclude that the standard Dirac method is
preferable—at least for classical theories. An example is given to illustrate these features, as well
as the possibility of having phase-space formulations with an odd number of physical degrees of
freedom.

1. Introduction

The dynamics of gauge theories is a very wide area of research because many fundamental
physical theories are gauge theories. The basic ingredients are the variational principle, which
derives the dynamics out of variations of an action functional, and the gauge principle, which is
the driving principle for determining interactions based on a Lie group of internal symmetries.
The gauge freedom exhibited by the complete theory becomes a redundancy in the physical
description. The classical treatment of these systems was pioneered by Dirac (1950, 1964),
Bergmann (1949), and Bergmann and Goldberg (1955). Dirac’s classical treatment in phase
space (the cotangent bundle for configuration space) has been shown (Gotay and Nester 1979,
1980, Batlleet al 1986) to be equivalent to the Lagrangian formulation in configuration—
velocity space (the tangent bundle). One ends up with a constrained dynamics with some
gauge degrees of freedom. One may choose, as is customary in many approaches (Pons and
Shepley 1995), to introduce new constraints in the formalism to eliminate these unwanted—
spurious—degrees of freedom. This is the gauge fixing procedure.

|| E-mail addresspons@ecm.ub.es

9 E-mail addressdsalisbury@austinc.edu

* E-mail addresslarry@helmholtz.ph.utexas.edu

0305-4470/99/020419+12$19.50 © 1999 IOP Publishing Ltd 419



420 J M Pons et al

There are approaches other than gauge fixing. For instance, the method of Faddeev and
Jackiw (1993) and Jackiw (1995) is to attempt to reduce the system to its physical degrees of
freedom by a process of directly substituting the constraints into the canonical Lagrangian. It
has been proved (Gaecand Pons 1997) that, as long as ineffective constraints—functions that
vanish in the constraint surface and whose differentials also vanish there—are not present, the
Faddeev-Jackiw method is equivalent to Dirac’s.

A reduction procedure (Abraham and Marsden 1978, Sniatycki 1974, Lee and Wald 1990)
which seems to be particularly appealing from a geometric point of view consists in quotienting
out the kernel of the presymplectic form in configuration—velocity space in order to get a
reduced space, the putative physical space, with a deterministic dynamics in it, that is, without
gauge degrees of freedom. One must be careful that these techniques do not change the physics,
for example by dropping degrees of freedom, and that they are applicable in all situations of
physical interest. For example, we know of no treatment of this technique which applies to the
important case when there are secondary constraints—one purpose of this paper is to provide
this treatment.

In this paper we present a complete reduction method based on quotienting out the kernel
of the presymplectic form. We establish a systematic algorithm and prove its equivalence with
Dirac’s method, but only so long as ineffective constraints do not appear. Our procedure turns
out to be equivalent to Dirac’s extended method, which enlarges the Hamiltonian by including
all first-class constraints. It differs from the ordinary Dirac method (supplemented by gauge
fixing) when ineffective constraints occur. Since the ordinary Dirac method is equivalent to
the Lagrangian formalism, it is to be preferred in classical models.

We will consider Lagrangians with gauge freedom. Thus they must be singular:
the Hessian matrix of the Lagrangian, consisting of its second partial derivatives with
respect to the velocities, is singular or, equivalently, the Legendre transformation from
configuration—velocity space to phase space is not locally invertible. Singular also means that
the pullback under this map of the canonical fasrfrom phase space to configuration—velocity
space is singular.

In order to proceed, we first compute, in section 2, in a local coordinate system, a basis for
the kernel of the presymplectic form. Our results will be in general local; global results could
be obtained by assuming the Lagrangian to be almost regular (Gotay and Nester 1980). In
section 3, we will single out the possible problems in formulating the dynamics in the reduced
space obtained by quotienting out this kernel. In section 4 we will solve these problems and
will compare our results with the classical Dirac method. It proves helpful to work in phase
space here, and we end up with a reduced phase space complete with a well defined symplectic
form. In section 5 we illustrate our method with a simple example (which contains ineffective
constraints). We draw our conclusions in section 6.

2. The kernel of the presymplectic form

We start with a singular Lagrangidin(q’, ¢°) (i = 1, ..., N). The functions
pi(q.q) :=0L/3¢'
are used to define the Hessidh, = dp;/dg’, a singular matrix that we assume has a constant
rank N — P. The Legendre mag L from configuration—velocity space (the tangent bundle)
TQ to phase spacg*Q, defined byp; = p;(q, ¢), defines a constraint surface of dimension
2N — P.
The initial formulation of the dynamics ifiQ uses the Lagrangian energy

EL:=pig — L
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and X, the dynamical vector field onQ,
ixwL =d(EL) (2.1)
where
wL =dg’ A dp
is the pullback under the Legendre map of the canonical formdg® A dp, in phase space.
w| is a degenerate, closed 2-form, which is called the presymplectic foffi@omn fact there
is an infinite number of solutions for equation (2.1) if the theory has gauge freedom, but they
do not necessarily exist everywhere (if there are Lagrangian constraiXitejust obey the
second-order condition for a function
Xq'=§ = X =3 N o
q dgq
whereA* is partially determined by equation (2.1).
At first sight, the kernel ofs, describes, in principle, the arbitrariness in the solutins
of equation (2.1). Therefore, it is tempting to think that in order to construct a physical phase
space, we must just quotient out this kernel. The complete implementation of this procedure
which we are presenting in this paper is, first, far from obvious and, second, as we will see,
fraught with danger.
Let us first determine a basis for

K = Ker(wy)
in local coordinates. We look for vecto¥s satisfying
iyw, =0. (2.2)
With the notation
k 0 k 0
Y=¢—+p8"—
dg* ag*
equation (2.2) implies
€W; =0 (2.3)
eiA,»j — ﬂiWij =0 (2.%)
where
. Opi_9b;
T ag) dg

SinceW is singular (this causes the degeneracwoj, it possesses null vectors. It is
very advantageous to this end to use information from phase space. It is convenient to use
a basis for these null vectorﬂ,; (u =1,..., P), which is provided from the knowledge of
the P primary Hamiltonian constraints of the theogy,”. Actually, one can take (Batllet al
1986),

N WL AP

m—ﬂ<m>—m@w (2.4
whereF L* stands for the pullback of the Legendre map : TQ —> T*Q. According to
equation (2a), €' will be a combination of these null vectors! = A*y,,. Notice that we
presume that these primary constraints are chosen to be effective.

To have a solution fof’ we need, after contraction of equation3®) with the null vectors

)/v]y
. . oD\ /9p;  9p; 36D
. api J\dq/  dq ap;
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which is to be understood as an equation forithe. We then use the identity

36D\ 95 Py
]-'L*( P )i’. wr (2%) Zo (2.5)
ap;j ) 9q' aq'

which stems from the fact tha(” (4. p) vanishes identically; we get

a(pl(Ll) a¢]§l) B a(pl(Ll) 8¢]§l)
opi dq'  9q’/ Op;

0=A'FL* ( ) =MFL(e" 47D, (2.6)
Condition (2.6) means that the combinatigfy " must be first class. Let us split the primary
Constraints(;bﬁl) between first Clas$f}l) and second claasfll,l) at the primary level, and we

presume that second-class constraints are second class everywhere on the constraint surface
(more constraints may become second class if we include secondary, tertiary, etc, constraints).
They satisfy
O HOy _ o 4O
(¢ 0Py =pc  detl{p), ¢} #0 2.7)
where pc stands for a generic linear combination of primary constraints. Equations (2.6)
simply enforce

A = 0.
Consequently, a basis for tkewill be spanned by,,, so that
¢ = )J“y/il
for A+ arbitrary. Once’ is given, solutions fog’ will then be of the form
B =r1B,, 'y,
where then# are arbitrary functions oQ. We will now determine th¢3,-il.
To computep;, it is again very convenient to use Hamiltonian tools. Consider any
canonical Hamiltoniat; (which is not unique), that is, one satisfyilg = FL*(H;). Since

we know from the classical Dirac analysis that the first-class primary constﬂj‘{ﬁtmay
produce secondary constraints,

2 1
¢l(41> = {7[151)7 HC}
we compute (having in mind equation.82))
2 2 A
a8 LN

Vi Aij + _a; (. PYW;j =y, Aij + o (4, p) %,
* 2 1
:yi y B}—L—((p’(‘l)):yi - E)(K—(P’(“)) (2.8)
pa 3éj pnattt aéj )

where we have used the operatodefined (Batllest al 1986, Gacia and Pons 1989) by
. B aL a
Kf:=q FL* (—f> +—FL* <—f> .
dq' ) 3q’ api
This operator satisfies (Batlit al 1986, Pons 1988)
Kf =FL*({f. H}) +v*(q. DFL*{f. o) (2.9)
where the functions* are defined through the identities

q' = FL*({q', He)) +v*(q. ) FL*({q'. o). (2.10)
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Property (2.9) implies, for our first-class constraints,
Koy} = FL'@,)

which has been used in equation (2.8). Let us continue with equation (2.8)

(€] (@) @ A
yi A+ m — __7:L*<a¢lf1 ) _ ]:L*(aqbl/«l ) dpj
pattu 9

q; dq’ api ) dq'
3 /. 3¢DN\ oL dpH Lo

+—(g¢'FL* & +—FL* 9, = W;;K i (2.11)
dq’ aq’ aq" opi op;

where we have omitted some obvious steps to produce the final result. We can read off from
this computation the solutions for equation32):

) oW 0@
g (200 (2.12)
Ha 8Pj 8Pj
Therefore, a basis fd€ is provided by
Y S
r, =yl 807 (2.13)
and
: .0
— ) J
Ay = V'“aqf + B/ Pyt (2.13%)

VectorsT',, in equation (213z) form a basis for KefT FL), where T FL is the tangent
map of FL (also often denoted byL,). They also span the vertical subspacekof
Ker(TFL) = Ver(K). This is a well known result (Cdienaet al 1988), but as far as
we know equations (23z) and (213b) are the first explicit local expression fhritself.

All other results (Cafiena 1990), obtained on geometrical groundsifare obvious once
the basis for this kernel is displayed, as it is in equationk¥? and (213b). For instance, it
is clear that dinlC < 2dimVer(K). Also, defining the vertical endomorphism

0 )
aq'
we haveS(K) c Ver(K). The case when
S(K) = Ver(K)

corresponds, in the Hamiltonian picture, to the case when all primary constraints are first class
(indicesp = indicesu1). These are the so-called type Il Lagrangians (Cangtjial 1986).
S(K) = @ corresponds to the case when all primary constraints are second class (indices
w = indicesu?).
Equation (213z) implies, for any functionf onT7*Q,
T, (FL*(f)) =0. (2.14)
The corresponding equation fe&x,,, is

AL (FLY)) = FL*(f, 92D (2.15)
Since we will make use of this property later, we now prove this result. The actian, pis

swer o= (71 () + 557 () pimn ()
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We use equations (@b), (2.4), and (2.5) to get
S & LA L (295 Bf
A, (FL*(f)) = FL (m@ - FL T

= FL*({f, o).

The commutation relations (Lie brackets) for the vectors in equatioh3qPand (213b)
are readily obtained, and we present these new results here for the sake of completeness. We
introduce the notation

{¢,u17 ¢M} #lﬂ¢v
{buss bu) = BRL, bpy + 3Bl Pobo
(commutation of first-class constraints is also first class). We arrive at

[T, T,] =0 (2.16)
[Ty, Ayl = FL*(A), DT, (2.160)
[Au, Ayl = FLA(B, A, + v FL* (B (60), 65, DT, (2.1&)

where thev’: are defined in equation (2.10). Observe that the number of vectors in
equations (2.3z) and (213b) is even because|| = || — |p1] is the number of second-class
primary constraints (at the primary level), which is even.

Because the algebra &fis closed, the action df on TQ is an equivalence relation. We
can form the quotient spadeQ /K and the projection

n:TQ — TQ/K.
T Q/K is endowed with a symplectic form obtained by quotienting out the null vectasg of
(that is,w| is projectable tdl' Q/K). The space’ Q/K is not necessarily the final physical

space, however, because we have not yet formulated the dynamics of the system. We now turn
to the question of the projectability of the Lagrangian energy.

3. Obstructions to the projectability of the Lagrangian energy

In order to project the dynamical equation (2.1y1@ /X, we needE| to be projectable under
7. However, in order foiE, to be projectable we must check whether it is constant on the
orbits generated by as defined by the vector fields of equationd &) and (213b). Indeed
T, (EL) = 0, but from equation (2.15)

A, (EL) = —FL*(¢P)
where

o2 = (¢, He}.
If FL*(¢Z) # O for someus, theny? is a secondary Hamiltonian constraint. As a side
remark, note that in this casJéL*(¢,fL21)) is a primary Lagrangian constraint. In fact it can be
written (Batlleet al 1986) as

FL*@2) = [Lliv},
where [L]; is the Euler—Lagrange functional derivativelof

We see that there is an obstruction to the projectabilitgoto 7 Q /K as long as there
exist secondary Hamiltonian constraints or equivalently if there exist Lagrangian constraints.
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One way to remove this problem (Ibort and MaSolano 1992, Ibort al 1993) is to use
the co-isotropic embedding theorems (Gotay 1982, Gotay and Sniatycki 1981) and look for an
extension of the tangent space possessing a regular Lagrangian that extends the singular one
and leads to a consistent theory once the extra degrees of freedom are removed. This method
is equivalent to Dirac’s, but only if there are no secondary Hamiltonian constraints. However,
if there are, which is precisely our case, the dynamics becomes modified and thus changes
the original variational principle. Instead of using this technique we will try to preserve the
dynamics.

4. Physical space

In the cases where secondary Hamiltonian constraints do exist (for instance, Yang—Mills and
Einstein—Hilbert theories), we must find an alternative reducticfi@in order to obtain the
projectability of E, .

The initial idea was to quotient out the orbits defined by equatiori3¢? and (213b).
Sincel’,,(E, ) = Owe can atleast quotient out the orbits defined by equatidB42 However,
this quotient spacd; Q /Ker(T FL), is already familiar to us: it is isomorphic to the surface
M, defined by the primary constraints T Q. In fact, if we definer; as the projection

m:TQ — TQ/Ker(TFL)
we have the decomposition of the Legendre m#dp= i; o 1, where

. To
" Ker(TFL)

(12 \_u
“\KerrFL)) ~ 7"

Now we can take advantage of working M; C T*Q. Let us project our original
structures orf'Q into M;. Consider the vector fielda,,. Equation (2.15) tells us that the
vector fieldsA ,, are projectable tdf; and that their projections are just, ¢f}1>}. In fact
these vector fields—, (1} are vector fields of * Q, but they are tangent tt/, because
are first class (among the primary constraints defidifiy. Incidentally, note that the vector
fields{—, ¢f11,1)} associated with the second-class primary constrairit§ (» are not tangent to
Mji.

Formulation inM; of the dynamics corresponding to equation (2.1) uses the pre-symplectic
form w, defined byw; = ijw, wherew is the canonical form in phase space, and the
Hamiltonian H, defined byH; = i} Hc, with H; such thatFL*(H;) = E_. The dynamic
equation inM; will be

T*Q

i1

with

inwl = dH]_. (4.1)

The null vectors for; are{—, ¢{”} (more specifically, their restriction taf;). (This
result is general: the kernel of the pullback of the symplectic form to a constraint surface in
T*Q is locally spanned by the vectors associated, through the Poisson bracket, with the first-
class constraints among the constraints which define the surface.) To project the dynamics of
equation (4.1) to the quotient @f; by the orbits defined by—, ¢}

M,

P — L
ST (= @)

(4.2)
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we need the projectability off; to this quotient manifold. To check this requirement it
is better to work inT*Q. Then projectability ofH; to P; is equivalent to requiring that
{¢f}f, Hc}m, = 0.

Here lies the obstruction we met in the previous section, for it is possible that
{¢D, Hc}lm, # O for some constraintg”. Let us assume that this is the case. As we

diglt;efore, we define

¢2 = (¢, He}.
These constraints may not be independent, some of them may vanigh ,0oand some
previously first-class constraints may become second class. Those that do not vanish are
secondary constraints and allow us to define the new sufigce M; (we define the map
iz My — My) by ¢ =0.
We can now form the projection df, := i H; to Mo/ ({—, qbf}l)}), but the projection of
wy = ijwq can still be degenerate in this quotient space, sinc@ay have acquired new null
vectors (and may have lost some of the old ones). In fact, once all constraints are expressed in
effective form, Kefw,) is generated under the Poisson bracket associatedatiytthe subset
of effective constraints that are first class with respect to the whole set of constraints defining
M. If there is a piece in this kernel that was not present in(&ey, then new conditions for
the projectability ofH, will appear.
The dynamic equation i, is
iXng = de. (43)
Itis still convenient to work with structures definediin Q. Suppose tha;t}fz) is any secondary,
first-class, effective constraint if; therefore{—, ¢@} € Ker(w,) but{—, ¢{2} ¢ Ker(wy).
The new projectability condition fok, induced byp? is

{$2, He}lm, = 0.
This means that we might find new constraints if this condition is not satisfied. A new surface
M3 will appear, and a new kernel for a newy should be quotiented out, and so on. We will not
go further because we are just reproducing Dirac’s algorithm in phase space (Dirac 1950, 1964,
Batlleet al 1986, Gotayet al 1978). We do have a shift of language, however: what in Dirac’s
standard algorithm is regarded as a condition for the Hamiltonian vector field to be tangent to
the constraint surface is regarded here as a projectability condition for the Hamiltonian to a
quotient space.

To summarize: the constraint surfagf is defined by the primary constrairmﬁl), a
subset of which are the first-class constraipfflé. These first-class constraints are used in the
formation of the quotient space

M,

1= —(1)
{— ¢}

The projectability condition foH (the pullback ofH; to M;) to P; may be expressed as the
condition{H,, <;5/(}1>}|M1 = 0. If this condition holds, we have found the final physical space.
If it does not, there are new, secondary constrajxﬁé and these constraints along with the
initial set of primary constraint$f}) are used to define a constraint surfa¢g Among the
set of constraints used to defing, are first-class constraints, including a subset of the first-
class constraints associated with, which we denote;bf};, and a subset of the secondary
constraints, which we denogg?). These first-class constraints are used in the formulation of
the quotient space

M,

Py = .
LT = o0 = 02D
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Again we must require projectability of the Hamiltonian; eventually, the final phase space is
_ My
(= d5 ) (= ) = 9D

Whered)g') are the final first-class-ary constraints, all of which are taken in effective form.

Py is endowed with a symplectic form which is the projection of the farmin M ¢, which is

the final constraint surface. The dimensiorgfis 2V — M — P, whereN is the dimension

of the initial configuration space/ is the total number of constraints, aid is the number

of final first-class constraints. Observe that we end up with the standard counting of degrees
of freedom for constrained dynamical systems: first-class constraints eliminate two degrees
of freedom each, whereas second-class constraints eliminate only one each. The final resultis
an even number because the number of second-class constraints is even.

In order to use the technique we have presented, the constraints are presumed to be effective
(for example, see equation (2.4))—if ineffective constraints occur, they can always be made
effective for use with this technique; in that sense, the technique is actually geometrical. One
might ask whether such modification of ineffective constraints can cause problems. Itturns out
that if ineffective constraints occur, then their presence may modify the gauge fixing procedure
used in conjunction with the original Dirac method in such a way that the counting of degrees
of freedom differs from that presented above. In the next section we discuss a simple example
that shows the difference between Dirac’s original treatment, supplemented by gauge fixing,
and the quotienting method we have outlined here, which corresponds to Dirac’s extended
method.

Dirac’s extended method, which is equivalent to the one we have presented here, produces a
final phase space which is always even-dimensional. Dirac’s original procedure, supplemented
by gauge fixing, has the superiority of being equivalent to the Lagrangian variational principle.
Therefore, in spite of the fact that this latter method may result in a system with an odd number
of degrees of freedom (as in the example in the following section), it is to be preferred for
classical models.

Py (4.4)

5. Example

Consider the Lagrangian

1 1
L == .2 + — 2 51
>¥ oY (5.1)
wherez # 0. The Noether gauge transformations are
Sx=0  sy=2 sr=e

Z
wheree is an arbitrary function.
First, we analyse this system from a Lagrangian point of view. The equations of motion
are

i=0  j=0. (5.2)

Thez variable is completely arbitrary and is pure gauge. These equations define a system with
three degrees of freedom in tangent space, parametrize@bpyx (0), y(0). Notice that the
gauge transformatiody vanishes on shell, spis a weakly gauge invariant quantity.

Let us now analyse this system using Dirac’s method. The Dirac Hamiltonian is

Hp = 3p2 + 32p5 — hp: (5.3)
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wherea is the Lagrange multiplier for the primary constramt = 0. The stabilization of
p. = 0 gives the ineffective constraimi = 0, and the algorithm stops here. The gauge
generator (Batllet al 1989, Pongt al 1997) is

€
EP\Z (5.4)
with ¢ an arbitrary function of time.

The gauge fixing procedure (Pons and Shepley 1995) has in general two steps. The firstis
to fix the dynamics and the second is to eliminate redundant initial conditions. Here, to fix the
dynamics we can introduce the general gauge figirgf (r) = O for f arbitrary. Stability of
this condition under the gauge transformations sets0. Since the coefficient af in G is
ineffective, it does not change the dynamical trajectories, and so the gauge fixing is complete.
Notice that this violates the standard lore, for we have two first-class constpaintspQ and
py = 0, but only one gauge fixing. This totals three constraints that reduce the original six
degrees of freedom to three(0), p,(0), y(0), the same as in the Lagrangian picture.

Instead, if we apply the method of quotienting out the kernel of the presymplectic form,
we get as a final reduced phase space

M;
({_’ pz}v {_1 Py})
whereM; is the surface in phase space definegpby= 0, p, = 0. We havewv,; = dx A dp,
andH, = 1 p2. The dimension of; is two.

This result, which is different from that using Dirac’'s method, matches the one obtained
with the extended Dirac Hamiltonian, where all final first-class constraints (in effective form)
are added with Lagrange multipliers to the canonical Hamiltonian. Dirac’s conjecture was
that the original Dirac theory and the extended one were equivalent. We conclude that when
Dirac’s conjecture holds, the method of quotienting out the kernel is equivalent to Dirac’s,
whereas if Dirac’s conjecture fails, it is equivalent to the extended Dirac’s formalism.

G=c¢p +

Py =

6. Conclusions

In summary, we have the following.

(1) We have obtained a local basis #6r= Ker(wy ) in configuration—velocity space for
any gauge theory. This is new and allows for trivial verifications of the properti&sgifen
in the literature. To obtain these results it has been particularly useful to rely on Hamiltonian
methods.

(2) We have obtained as the final reduced phase space the quotient of the final Dirac
constraint surface in the canonical formalism by the integral surface generated by the final first-
class constraints in effective form. We find the constraint suriéGeif equation (4.4)) through
a projectability requirement on the Lagrangian energy (or equivalently, on the Hamiltonian)
rather than through imposing tangency conditions on the Hamiltonian flows. Let us emphasize
this point: we do not talk of stabilization of constraints but rather projectability of structures
which are required to formulate the dynamics in a reduced physical phase space.

(3) We have compared our results with Dirac’s procedure. An agreement exists in all
the cases when no ineffective Hamiltonian constraints appear in the formalism. If there are
ineffective constraints whose effectivization is first class, then our results disagree with Dirac’s,
and it turns out that the quotienting algorithm agrees with the extended Dirac formalism. When
there are disagreements, the origin is in the structure of the gauge generators. Sometimes the
gauge generators contain pieces that are ineffective constraints, and they, contrary to the usual
case, do not call for any gauge fixing. Essentially, the variables that are canonically conjugate to
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these first-class ineffective constraints are weakly (on shell) gauge invariant. The quotienting
reduction method, as well as Dirac's extended formulation, eliminates these variables and
yields a phase space whose variables are strictly (on- and off-shell) gauge invariant. This is
the difference with Dirac’s original method, supplemented with gauge fixing, which is able to

retain the weakly gauge invariant quantities. For this reason we feel that this latter technique
is superior to the quotienting algorithm in these circumstances—at least for classical models.

(4) We have produced a simple example that illustrates the failure of Dirac’s conjecture
in the presence of ineffective constraints. This example also shows that, in Dirac’s analysis,
it is possible to have Hamiltonian formulations with an odd number of physical degrees of
freedom. We must remark that in Dirac’s approach (supplemented with gauge fixing) it is not
always true that every first-class constraint eliminates two degrees of freedom: this does not
happen if there are first-class constraints that appear in the stabilization algorithm in ineffective
form.

(5) It is worth mentioning that other reduction techniques, specifically the Faddeev and
Jackiw method, may also fail to reproduce Dirac’s theory (@aend Pons 1998) if the
formalism contains ineffective constraints.

(6) Of course, one should not forget quantum mechanics. The canonical approach to
guantum mechanics involves a (non-singular) symplectic form (Isham 1984). In this method,
it is therefore required that phase space be even-dimensional. This argument would tend
to favour the quotienting algorithm. However, it may be that other approaches to quantum
mechanics, possibly the path integration approach, do not need such arequirement. Inany case,
itis not strictly necessary that a model which is acceptable as a classical model be quantizable.
It is for these reasons that we say that an approach to Hamiltonian dynamics which results
in a phase-space picture equivalent to the tangent space picture—the original Dirac method
supplemented with gauge fixing—is favoured for classical models.

Acknowledgments

We are pleased to thanké€ile DeWitt-Morette for her advice. JMP and DCS would like to
thank the Center for Relativity of The University of Texas at Austin for its hospitality. JMP
acknowledges support by CIRIT and by CICYT contracts AEN95-0590 and GRQ 93-1047 and
wishes to thank the Comissionat per a Universitats i Recerca de la Generalitat de Catalunya
for a grant. DCS acknowledges support by National Science Foundation grant PHY94-13063.

References

Abraham R and Marsae] E 1978 0oundations of Mechanic&nd edn (Reading, MA: Benjamin-Cummings)

Batlle C, Gomis J, Gacia X and Pons J M 1989 Neother’s theorem and gauge transformations: application to the
bosonic string an(fP;*l J. Math. Phys301345-50

Batlle C, Gomis J, P@&J M and Roman N 1986 Equivalence between the Lagrangian and Hamiltonian formalism for
constrained systeniks Math. Phys272953-62

Bergmam P G 1949 Non-linear field theorié¥ys. Rev75680-5

Bergmam P G and Goldberg | 1955 Dirac bracket transformations in phase Bgse Revo8531-8

Cantrjin F, Cariiena J F, Crampin M and Ibdr A 1986 Reduction of degenerate Lagrangian systén@eom. Phys
3353-400

Carifiena J F 1990 Theory of singular Lagrangi&nsstsch. Phys38 641-79 and references therein

Carifiena J F, bpez C and Ro@n-Roy N 1988 Origin of the Lagrangian constraints and their relation with the
Hamiltonian formulation). Math. Phys291143-9

Dirac P A M 1950 Generalized Hamiltonian dynamican. J. Math2 129-48

——1964Lectures on Quantum Mechani@dew York: Yeshiva University Press)



430 J M Pons et al

Faddeev L and Jackiw R 1993 Hamiltonian reduction of unconstrained and constrained $3isysimRev. Let60
16924

Garda J A and Pons J M 1997 Equivalence of Faddeev—Jackiw and Dirac approaches for gaugeltitedrided.
Phys.A 12451-64

——1998 Faddeev—Jackiw approach to gauge theories and ineffective constitaihtslod. PhysA, to be published

Gotay M 1982 On coisotropic imbeddings of presymplectic manifeide. Am. Math. So84 111-14

Gotay M J and Nested M 1979 Presymplectic Lagrangian systems |: the constraint algorithm and the equivalence
theoremAnn. Inst. H. Poincag A 30129-42

——1980 Presymplectic Lagrangian systems |l: the second-order equation prdbienmst. H. Poincag A 321-13

Gotay M J, NesteJ M and Hinds G 1978 Presymplectic manifolds and the Dirac—-Bergmann theory of constraints
J. Math. Phys.192388-99

Gotay M and Sniatycki J 1981 On the quantization of presymplectic dynamical systems via coisotropic imbeddings
Commun. Math. Phy82 377-89

Gracia X and Pons J M 1989 On an evolution operator connecting Lagrangian and Hamiltonian forrmettsMath.
Phys.17175-80

Ibort L A, Landi G, Maiin-Solano J and Marmo G 1993 On the inverse problem of Lagrangian supermedhanics
J. Mod. PhysA 8 3565-76

Ibort L A and Maiin-Solano J 1992 A geometric classification of Lagrangian functions and the reduction of evolution
spacel. Phys. A: Math. Ger5 3353-67

Ishan C J 1984 Topological and global aspects of quantum thRetgtivie, Groupes, et Topologie éd B S DeWitt
and R Stora (Amsterdam: North-Holland) pp 1059-290

Jackiw R 1995 (Constrained) quantization without té&rs. 2nd Workshop on Constraints Theory and Quantization
Methods (Montepulciano, 1998%ingapore: World Scientific) pp 163—-75

Lee J and Wald R M 1990 Local symmetries and constraintéath. Phys31 725-43

Pons J M 1988 New relations between Hamiltonian and Lagrangian constraittigs. A: Math. Ger212705-15

Pons J M, SalisbyrD C and ShepleL C 1997 Gauge transformations in the Lagrangian and Hamiltonian formalisms
of generally covariant systenihys. RevD 5565868

Pons J M and Sheptd- C 1995 Evolutionary laws, initial conditions and gauge fixing in constrained systéass.
Quantum Gravl12 1771-90

Sniatycki J 1974 Dirac brackets in geometric dynantios. Inst. H. Poinca& A 20 365-72



